

Atoms, Elements, Compounds and Mixtures

1 – 1 Models of the Atoms

History of the Atom

- Scientists have not always had the tools that we have now.
- A long time ago, scientists did not have any tools other than their five senses and their ability to reason.

Predict the Outcome

• What would be the end result if you took an aluminum bar and cut it in half, then cut one of the halves in half, then cut it in half, etc... ?

• Early scientists theorized that eventually you would not be able to cut it in half any more.

Only one particle would be left.

They named these particles 'Atoms'

<u>Atoms</u> means 'cannot be divided'

• Scientists could not study this because they lacked the tools to see things this small.

- This curiosity about matter led to the field of science called 'Chemistry'.
- Chemistry means 'the study of matter'.

Model of the Atom

- In the 1700's, scientists were putting substances together to see what was formed.
 - Scientists were also taking substances apart to see what they were made of.
- Eventually scientists realized that there are things that cannot be taken apart.

Elements

 <u>Element</u> – a substance that cannot be broken down into simpler substances.

• Examples : Gold, Silver, Copper, Oxygen

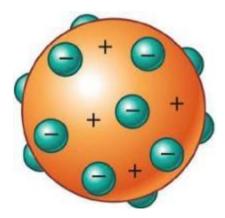
John Dalton

- Developed a theory on matter in the early 1800's.
- 1. Matter is made up of atoms.
- 2. Atoms cannot be divided into smaller pieces.
- 3. All of the atoms of an element are exactly alike.
- 4. Different elements are made of different kinds of atoms.

Dalton's Atomic Model

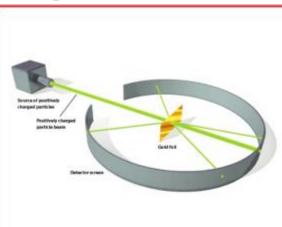
• He envisioned an atom as a hard sphere that was the same throughout.

J.J. Thomson


- In 1897, Thomson used a cathode ray tube in his experiments.
 - A tube that is a vacuum and has electricity passed through it.
- Thomson bent the ray of light inside the tube using a magnet.
- Because of this, Thomson knew that the particles in the ray of light had a negative charge.

- Thomson called these negatively charged particles 'electrons'.
- <u>Electron</u> a negatively charged particle that exists in an electron cloud formation around an atom's nucleus.
- Thomson tested many gases inside his cathode ray tube and found that the electrons existed inside all of the gases.

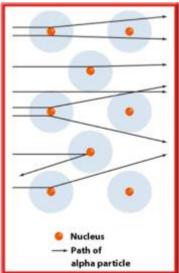
He theorized that electrons are present in all atoms.
This means that there are things smaller than atoms.

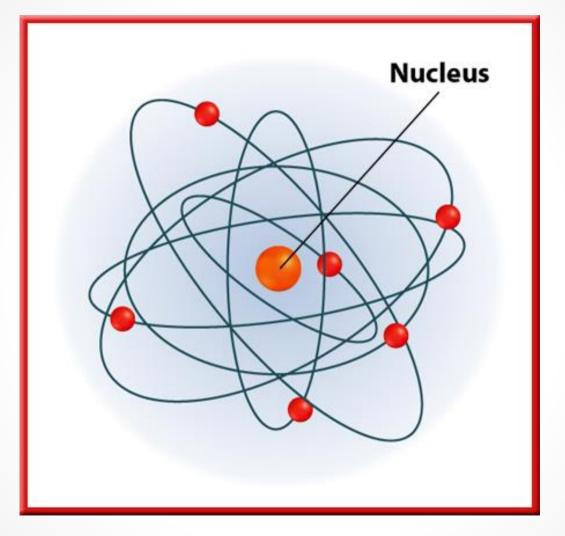

Thomson's Atomic Model

• A positively charged sphere that has negatively charged electrons spread evenly throughout.

Ernest Rutherford

- Rutherford shot alpha particles through some gold leaf (very thin gold... 1 – 3 atoms thick)
- Rutherford expected the alpha particles to blast right through the gold and not be deflected.




Rutherford's Atomic Model

• He theorized that almost all of the mass is crammed into a very small area in the center of the atom.

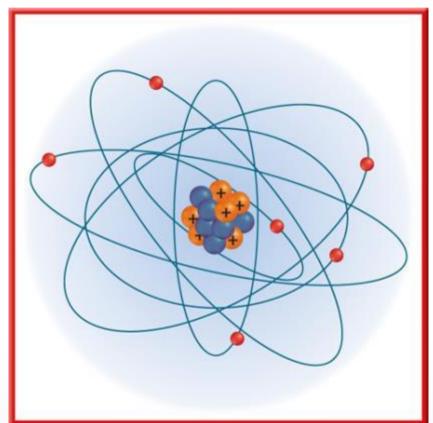
This area is called the 'nucleus'.

<u>Nucleus</u> – center of an atom.

Proton

- Rutherford theorized that all of the positive charge was located in the nucleus.
 Proved true in 1920.
- <u>Proton</u> positively charged particle in the nucleus of an atom.

Neutron


- Scientists soon learned how to mass an atom.
 - The scientists learned that there was something else in an atom that had mass.

• That something else had no charge.

 <u>Neutron</u> – electrically neutral particle that has the same mass as a proton and is found in an atom's nucleus.

 It took another 20 years for scientists to prove this theory.

Nuclear Atom

Electron Cloud Model

- Scientists thought that electrons followed paths and orbited the nucleus.
- When scientists developed a method for locating an electron, they found something else.
- Electrons do not follow a path, they are unpredictable.
- <u>Electron Cloud</u> region surrounding the nucleus of an atom, where electrons are most likely to be found.

Electron Cloud Model

	/	Nucleus
4		

Subatomic Particles

- Subatomic Particles are the particles that make up an atom.
 - Nucleus located in the center of the atom
 - Proton Positively charged particle that has a mass of 1 amu.
 - Neutron No charge and has a mass of 1 amu.
 - Electron Cloud region outside the nucleus where electrons are located
 - Electron Negatively charged particle that has almost no mass.

1 – 2 The Simplest Matter

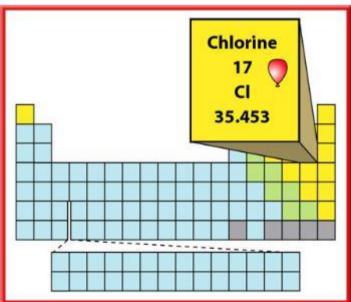
Periodic Table of Elements

- There are at least 115 elements.
 - 90 of these elements occur naturally on Earth
 - The other elements are known as 'Synthetic' Elements
 - o <u>Synthetic</u> Manmade.
- They are organized on a chart called the 'Periodic Table of Elements'.

PERIODIC TABLE OF THE ELEMENTS

1	1 Hydrogen H 7 1.008	2	1	Symbol		? -s	tate of natter		Gas Liquid Solid Syntheti			Metal Metaloid Nonmetal	13	14	15	16	17	18 Helium 20 He 4.003	/
2	Lithium Li D 6.941	Beryllium Be 9.012		ine muss									Boron 5 8 10.811	Carbon 6 C	Nitrogen 7 N 14.007	Oxygen 8 0 15.999	Fluorine 9 18.998	Neon 10 0 Ne 20.180	
3	Sodium 11 Na 22.990	Magnesium 12 Mg 24.305	3	4	5	6	,	8	9	10	1	1 12	Aluminum Al 0 26.982	Silicon 14 Si 28.086	Phosphorus 15 P 30.974	Sulfur 16 5 32.065	Chlorine 17 (7 21 35.453	Argon 18 Ar 39.948	
4	Potassium 19 K 39.098	Calcium 20 Ca 40.078	Scandium 21 Sc	Titanium 22 Ti 47.867	Vanadium 23 V 50.942	Chromium Cr	Manganese 25 Mn 54.938	Iron 26 Fe 55.845	Cobalt 27 Co 58.933	Nickel 28 Ni 🗖 58.693	Copper 29 Cu 63.546	30 Zn 🗆	Gallium 31 Ga 🗖 69.723	Germanium Ge Ge 72.64	Arsenic 33 As 74.922	Selenium 34 Se 78.96	Bromine 35 Br 79.904	Krypton 36 Kr 83.798	
5	Rubidium 37 Rb 85.468	Strontium 38 5r 🗖 87.62	Yttrium 39 7 88.906	Zirconium 40 Zr 91.224	Niobium 41 Nb 92.906	Molybdenum 42 Mo 95.94	Technetium 43 Tc (98)	Ruthenium 44 Ru 101.07	Rhodium 45 Rh 102.906	Palladium 46 Pd 10 106.42	Silver 47 Ag 107.86		Indium 49 In 114.818	Tin 50 5n 118.710	Antimony 51 55 121.760	Tellurium 52 Te 127.60	Iodine 53 I 126.904	Xenon 54 7 Xe 131.293	
6	Cesium 55 Cs 132.905	Barium 56 Ba 137.327	Lanthanum 57 La 138.906	Hafnium 72 Hf 178.49	Tantalum 73 Ta 180.948	Tungsten 74 W - 183.84	Rhenium 75 Re 186.207	Osmium 76 08 190.23	Iridium 77 Ir 192.217	Platinum 78 Pt 0 195.078	Gold 79 Au 196.96	Mercury 80 Hg 200.59	Thailium 81 TI 0 204.383	Lead 82 Pb 207.2	Bismuth 83 Bi 0 208.980	Polonium 84 Po (209)	Astatine 85 At (210)	Radon 86 7 Rn (222)	
7	Francium 87 Fr (223)	Radium 88 Ra (226)	Actinium 89 Ac (227)	104 Rf (261)	Dubnium 105 05 (262)	Seaborgium 106 Sg ③ (266)	Bohrium 107 Bh (264)	Hassium 108 Hs (277)	Meitnerium 109 💿 Mt © (268)	110	Unununit * 111 Uuu (272)	m Ununbium * 112 Uub (285)		Ununquadium * 114 Uuq (289)		** 116		** 118	

		1	/	/	/	1	J.	/	/	/	/	/		/	1	7
Lantha se	nide cries	Cerium 58 Ce	Princodymium 59 Pr 🗔 140.908	Noodymium 60 Nd 144.24	Promethium 61 Pm (145)	5amarium 62 5m	Europium 63 Eu 151.964	Gadolinium 64 Gd 0 157.25				68 Er	Thulium 69 Tm 🗇 168.934	Ytterbium 70 Yb 173.04	Lutetium 71 Lu 174.967	
Action Set	nide ries	Thorium 90 Th: 232.038	Protectinium 91 Pa 231.036	Uranium 92 U () 238.029	Neptunium 93 Np (237)	Plutonium 94 Pu (244)	Americium 95 Am (243)	Curium 96 Cm (247)	Berkelium 97 Bk (247)	Californium 98 Cf (251)	Einsteinium 99 Es (252)	Fermium 100 Fm (2) (257)	Hendelevium 101 Md (258)	Nobelium 102 No O (259)	Lawrencium Lr 💿 (262)	


- Columns on the Periodic Table of Elements.
- The elements in a group have similar chemical properties.

Periods

- Rows on the Periodic Table of Elements.
- The elements in a period have the same number of energy levels.

Atomic Number

- <u>Atomic Number</u> the number of Protons in an atom.
- The whole number on top in an element key

Mass Number

 <u>Mass Number</u> – The number of protons and neutrons located in the nucleus.

- In nature, not every atom of an element has the same number of neutrons.
- <u>Isotope</u> Atoms of the same element that have different numbers of neutrons.
- The mass number is used to specify which isotope is being used.
 - Example H-1 and H-2

Average Atomic Mass

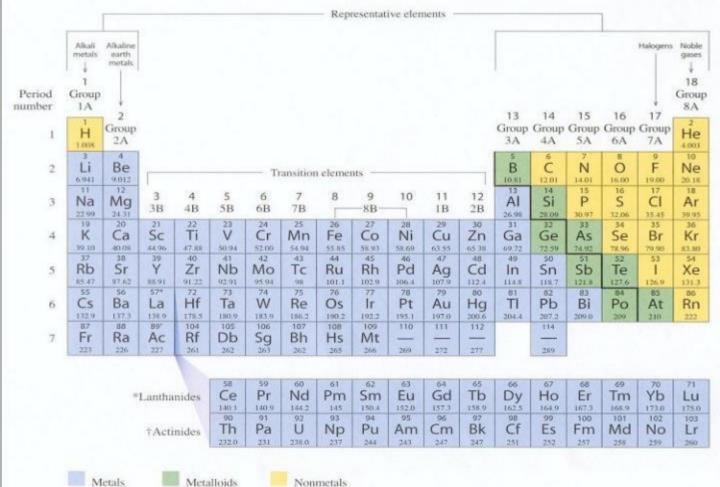
- <u>(Average) Atomic Mass</u> Average mass of an atom of an element; its unit of measure is the atomic mass unit (u), which is 1/12 the mass of a carbon-12 atom.
 - Due to isotopes, some atoms of the same element have different weights (because they have different numbers of neutrons).
 - Scientists take a sample from nature and then average the masses.

Classification of Elements

3 general categories
 1. Metals
 2. Nonmetals
 3. Metalloids

Metals

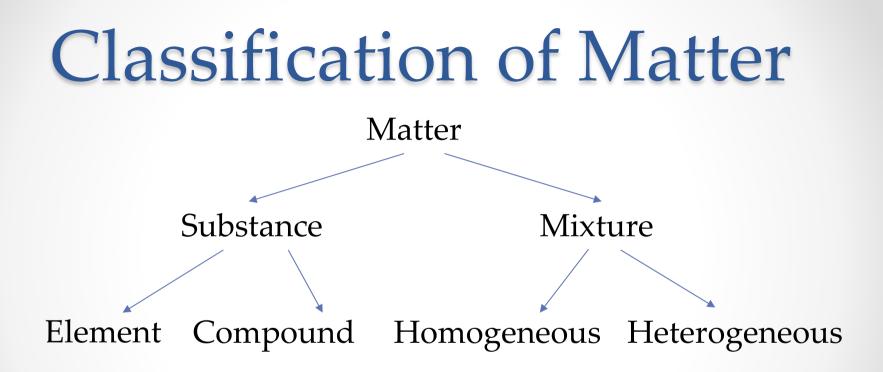
- Element that is malleable, ductile, a good conductor of electricity, and generally has shiny or metallic luster.
 - <u>Malleable</u> Can be bent or pounded into shapes.
 - <u>Ductile</u> Can be stretched into wires.
 - o <u>Luster</u> Shiny


Nonmetals

- <u>Nonmetals</u> Element that is usually a gas or a brittle solid at room temperature, is a poor conductor of heat and electricity, and is dull.
 - <u>Brittle</u> Easily broken when made to change shape.

Metalloid

• <u>Metalloid</u>- Element that shares some properties with both metal and nonmetals.


Periodic Table of Elements

Metals

1 – 3

Compounds and Mixtures

Substances

- <u>Substance</u> Matter that has the same composition and properties throughout.
- Two types of substances :
 - 1. Element substance that cannot be broken down into simpler substances.
 - 2. Compound substance produced when elements combine and whose properties are different from each of the elements in it.

Chemical Formulas

- Tells you which elements make up a compound as well as how many atoms of each element are present.
 - H₂O

 H_2O_2

2 – Hydrogen

1 - Oxygen

Mixtures

- <u>Mixture</u> A combination of compounds and elements that has not formed a new substance and whose proportions can be changed without changing that mixture's identity.
- Two types of mixtures :
 - 1. Homogeneous Mixture the same throughout
 - 2. Heterogeneous Mixture different parts of the mixture can be seen